
Permission to make digital or hard copies of part or all of this work for personal or classroom use is 
granted without fee provided that copies are not made or distributed for commercial advantage and that 
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this 
work must be honored. For all other uses, contact the Owner/Author. 
SIGGRAPH 2013, July 21 – 25, 2013, Anaheim, California. 
2013 Copyright held by the Owner/Author. 
ACM 978-1-4503-2261-4/13/07 

Embree Ray Tracing Kernels for CPUs and the Xeon Phi Architecture

Sven Woop∗

Intel Labs
Louis Feng†

Intel Corporation
Ingo Wald‡

Intel Labs
Carsten Benthin§

Intel Labs

1 Introduction

Modern CPUs achieve high computational throughput by imple-
menting increasingly wide SIMD vector units (such as 8-wide AVX
or 16-wide SIMD for the Xeon Phi instructions). Achieving opti-
mal performance on these architectures requires leveraging these
wide SIMD vector units effectively. We present Embree [Ernst
and Woop 2011], an open source ray tracing library developed
to show performance-focused graphics programmers how to take
full advantage of multiple cores and wide SIMD units in the con-
text of ray tracing. Embree features spatial acceleration structures
and traversal algorithms that are optimized for CPUs and the Intel
Xeon Phi architecture. In particular, Embree supports hybrid ray
packet/single ray traversal algorithms—optimized for both CPUs
and Xeon Phi—that are designed to handle both coherent and in-
coherent workloads efficiently [Benthin et al. 2012]. While a first
version of Embree originally focused only on single ray traversal
on SSE- or AVX-enabled CPUs, this talk specifically covers the
upcoming Embree 2.0 release that explicitly also supports the Xeon
Phi architecture, adds support for packet tracing, two level hierar-
chies, partial scene updates, dynamic content, and virtual intersec-
tors for user defined primitives.

Xeon Phi is a powerful platform for rendering because of its high
computational capabilities, fast memory system including large
caches, and flexible programming model that supports complex
algorithms. The Xeon Phi coprocessor provides 60 cores, each
core with a 512-bit wide vector unit and four concurrent hyper-
threads. Embree contains highly optimized data structure builders
and single-ray kernels that achieve best performance on this archi-
tecture. Porting an existing renderer to Xeon Phi can be as easy as
replacing the ray tracing core with these kernels and recompiling
the system. While this approach of porting to Xeon Phi is straight-
forward and gives good results, it would not fully leverage compu-
tational capabilities of Xeon Phi because the non-traversal render-
ing code might not make good use of the vector units.

To better leverage the wide vector units of Xeon Phi throughout
the entire renderer, Embree 2.0 additionally provides a tight inte-
gration with the Intel SPMD Program Compiler (ispc) [Pharr and
Mark 2012]. ispc is a Single Program, Multiple Data (SPMD)
vectorizing language similar to OpenCL. In addition to SPMD, it
also supports scalar data and control flow and allows for a tight in-
tegration with existing C++ code. Using ispc makes it possible to
have a single implementation of a rendering system, partly written
in C++, that can transparently leverage the SSE, AVX, and Xeon
Phi instruction sets throughout the entire rendering system without
having to write any IA-specific code at all. While most of the ren-
derer is written in high-level ispc code, we exploit ispc’s tight
coupling to C++ code to switch over to special high-performance
traversal kernels (implemented in C++ and intrinsics) whenever the
renderer casts a ray; Embree automatically uses different traversal
codes specialized for each instruction set, without the user having
to care about this.

∗e-mail:sven.woop@intel.com
†e-mail:louis.feng@intel.com
‡e-mail:ingo.wald@intel.com
§e-mail:carsten.benthin@intel.com

Embree provides only a minimal API to the acceleration structure
builders and traversal algorithms, which gives the user all the flexi-
bilities for implementing their own rendering system. Embree also
provides an example renderer for CPUs written in C++ and a second
implementation written in ispc that performs best on Xeon Phi.
We have seen many vendors and users successfully integrate the
Embree kernels into their own projects. For example, DreamWorks
Animation has showcased a lighting tool prototype utilizing Em-
bree 2.0 at Super Computing 2012.

Figure 1: Models rendered with the Embree ray tracing kernels
using the example path tracer. The crown model is provided by
Martin Lubich, http://www.loramel.net.

2 Presentation

In this presentation, we will discuss the design challenges, new fea-
tures, and our experiences with the development of Embree 2.0. For
potential users of Embree, we will show how to use the Embree API
from a C++ or ispc application. For attendees interested in im-
plementation details, we will describe the SIMD friendly ray trac-
ing algorithms for CPUs and the Xeon Phi hardware architecture
including performance numbers for non-trivial path tracing work-
loads for both architectures. In particular, we will present the single
ray traversal kernels which achieve best performance on CPUs and
our hybrid ray packet/single ray approach that gives optimal perfor-
mance on Xeon Phi. We will also talk about our impressions on the
potential and challenges of using Xeon Phi for ray tracing.

References

BENTHIN, C., WALD, I., WOOP, S., ERNST, M., AND MARK,
W. R. 2012. Combining single and packet-ray tracing for arbi-
trary ray distributions on the intel mic architecture. IEEE Trans-
actions on Visualization and Computer Graphics 18, 9, 1438–
1448.

ERNST, M., AND WOOP, S., 2011. Embree: Photo-
Realistic Ray Tracing Kernels. http://software.intel.com/en-
us/articles/embree-photo-realistic-ray-tracing-kernels, June.

PHARR, M., AND MARK, W. 2012. ISPC: A SPMD Compiler
for high-performance CPU Programming. In Innovative Parallel
Computing (InPar), 2012, 1 –13.


